Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam

نویسندگان

  • Rita Graceffa
  • R. Paul Nobrega
  • Raul A. Barrea
  • Sagar V. Kathuria
  • Srinivas Chakravarthy
  • Osman Bilsel
  • Thomas C. Irving
چکیده

Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick-Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution.

Gold nanoparticles (AuNP) were prepared by the homogeneous mixing of continuous flows of an aqueous tetrachloroauric acid solution and a sodium borohydride solution applying a microstructured static mixer. The online characterization and screening of this fast process ( approximately 2 s) was enabled by coupling a micromixer operating in continuous-flow mode with a conventional in-house small a...

متن کامل

Minireview: structural insights into early folding events using continuous-flow time-resolved small-angle X-ray scattering.

Small-angle X-ray scattering (SAXS) is a powerful method for obtaining quantitative structural information on the size and shape of proteins, and it is increasingly used in kinetic studies of folding and association reactions. In this minireview, we discuss recent developments in using SAXS to obtain structural information on the unfolded ensemble and early folding intermediates of proteins usi...

متن کامل

Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY)

A high-brilliance synchrotron P12 beamline of the EMBL located at the PETRA III storage ring (DESY, Hamburg) is dedicated to biological small-angle X-ray scattering (SAXS) and has been designed and optimized for scattering experiments on macromolecular solutions. Scatterless slits reduce the parasitic scattering, a custom-designed miniature active beamstop ensures accurate data normalization an...

متن کامل

Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers

Knowledge of protein structure provides essential insight into function, enhancing our understanding of diseases and enabling new treatment development. X-ray crystallography has been used to solve the structures of more than 100 000 proteins; however, the vast majority represent long-lived states that do not capture the functional motions of these molecular machines. Reactions triggered by the...

متن کامل

A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics.

We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 μs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013